Refine Your Search

Topic

Author

Search Results

Technical Paper

Generic Control Software Architecture for Battery Management Systems

2015-09-29
2015-01-2849
Electrification is a key enabler to reduce emissions levels and noise in commercial vehicles. With electrification, Batteries are being used in commercial hybrid vehicles like city buses and trucks for kinetic energy recovery, boosting and electric driving. A battery management system monitors and controls multiple components of a battery system like cells, relays, sensors, actuators and high voltage loads to optimize the performance of a battery system. This paper deals with the development of modular control architecture for battery management systems in commercial vehicles. The key technical challenges for software development in commercial vehicles are growing complexity, rising number of functional requirements, safety, variant diversity, software quality requirements and reduced development costs. Software architecture is critical to handle some of these challenges early in the development process.
Technical Paper

Hybrid Dynamic Analysis of Crankshaft-Crankcase for Off-Road Engine Application

2015-09-22
2015-36-0120
This work presents the results and methodology of a dynamic durability analysis considering the interaction between crankcase and crankshaft. The approach is based on a robust mathematical model that couples the dynamic characteristics of the crankshaft and crankcase, representing the actual interaction between both components. Dynamic loadings generated by the crankshaft are transferred to the crankcase through flexible 3D hydrodynamic bearings. This methodology is referred to as hybrid simulation, which consists in the solution of the dynamics of an Elastic Multi-Body System (E-MBS) coupled with the Finite Element Methodology (FEM). For this study, it was considered an in-line 6-cylinder diesel engine used in off-road applications. The crankcase design must withstand higher loads due to new calibration targets stipulated for PROCONVE (MAR-I) emission regulations.
Technical Paper

Bharat Stage VI Solutions for Commercial Engines for the India Market

2017-01-10
2017-26-0043
The Bharat Stage VI (BS-VI) emission legislation will come into force in 2020, posing a major engineering challenge in terms of system complexity, reliability, cost and development time. Solutions for the EURO VI on-road legislation in Europe, from which the BS-VI limits are derived, have been developed and have already been implemented. To a certain level these European solutions can be transferred to the Indian market. However, several market-specific challenges are yet to be defined and addressed. In addition, a very strict timeline has to be considered for application of advanced technologies and processes during the product development. In this paper, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the exhaust aftertreatment side. This includes boosting and fuel injection technologies as well as different exhaust gas recirculation methods.
Technical Paper

On-Board Diagnostic Related Challenges on Two-Wheelers Related to the Upcoming Bharat Stage VI Emission Standards

2017-01-10
2017-26-0147
The decision to leapfrog from the Bharat Stage (BS) IV emission standards directly to the BS VI standards not only effects passenger and commercial vehicles but also India’s by far largest vehicle class, with regards to sales and production, the two-wheelers. The BS VI norm will not only tighten the emission standards, but it will also increase the required emission mileage level and upgrade the On-Board Diagnostic (OBD) requirements, also by introducing In-Use Monitor Performance Ratio (IUMPR) standards. While OBD was already introduced for passenger and commercial vehicles with BS IV in 2010, OBD will be then newly introduced for two-wheelers. The OBD system monitors the vehicle’s in-use emission performance, informs the driver via the malfunction indication light (MIL) on the dashboard in case of an emission relevant failure, standardises the diagnostic code handling and regulates a standardised access to the electronic control units (ECUs) for maintenance and inspection purposes.
Technical Paper

Bharat Stage-V Solutions for Agricultural Engines for India Market

2019-01-09
2019-26-0148
The Bharat Stage (CEV/Tractor) IV & V emission legislations will come into force in Oct 2020 & Apr 2024 respectively, posing a major engineering challenge in terms of system complexity, reliability, costs and development time. Solutions for the EU Stage-V NRMM legislation in Europe, from which the BS-V limits are derived, have been developed and are ready for implementation. To a certain extent these European solutions can be transferred to the Indian market. However, certain market-specific challenges are yet to be defined and addressed. In addition, a challenging timeline has to be considered for application of advanced technologies and processes during the product development. In this presentation, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the after treatment components.
Journal Article

Metric-based Evaluation of Powertrain Software Architecture

2017-03-28
2017-01-1615
Ensuring software quality is one of the key challenges associated with the development of automotive embedded systems. Software architecture plays a pivotal role in realizing functional and non-functional requirements for automotive embedded systems. Software architecture is a work-product of the early stages of software development. The design errors introduced at the early stages of development will increase cost of rework. Hence, an early evaluation of software architecture is important. PERSIST (Powertrain control architecture Enabling Reusable Software development for Intelligent System Tailoring) is a model-based software product line approach which focuses on cross-project standardization of powertrain software. The product line is characterized by common design guidelines and adherence to industry standards like ISO 25010, AUTOSAR and ISO 26262.
Technical Paper

Internal and External Measures for Catalyst Light-Off Support

2015-09-06
2015-24-2501
Within a project of the Research Association for Combustion Engines e.V., different measures for rising the temperature of exhaust gas aftertreatment components of both a passenger car and an industrial/commercial vehicle engine were investigated on a test bench as well as in simulation. With the passenger car diesel engine and different catalyst configurations, the potential of internal and external heating measures was evaluated. The configuration consisting of a NOx storage catalyst (NSC) and a diesel particulate filter (DPF) illustrates the potential of an electrically heated NSC. The exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC) and a DPF shows in simulation how variable valve timing in combination with electric heated DOC can be used to increase the exhaust gas temperature and thus fulfill the EU6 emission limits.
Journal Article

OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts

2015-04-14
2015-01-1040
Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
X